
A Concise Representation of Geometry
Suitable for Mesh Generation

L. Paul Chew1 Stephen Vavasis2 S. Gopalsamy3 TzuYi Yu4

Bharat Soni5

1Department of Computer Science, Cornell University, Ithaca, NY 14853, chew@cs.cornell.edu
2Department of Computer Science, Cornell University, Ithaca, NY 14853, vavasis@cs.cornell.edu

3Mechanical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294,
sgopals@eng.uab.edu

4Information Management Department, National Chi-Nan University, Puli, Taiwan, ROC,
tyyu@ncnu.edu.tw

5Mechanical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294,
bsoni@eng.uab.edu

ABSTRACT

We describe a new geometric representation scheme suitable for finite element mesh generation. The representation
is by boundaries (i.e., brep) and relations between boundaries are stored as a directed acyclic graph. The geometry
itself is based on NURBS curves and surfaces. The new geometry proposal has been been adopted by the Cornell-
Mississippi State joint ITR project. We describe why the geometric representation scheme is well-suited for mesh
generation and engineering analysis.

Keywords:geometry, standard, brep, boundary representation, NURBS

1. ON THE NEED FOR A GEOMETRY
STANDARD

Most finite element mesh generators need as input a
representation of the geometric model under consid-
eration. There is no generally accepted standard for
representing geometry, particularly in academic com-
munities. In part, this is because of the complexity of
existing standards. We propose a new geometric stan-
dard with just one geometric entity type and only a few
additional types. Despite the standard’s sparse set of
types, it is able to exactly represent very complicated
curved geometry including nonmanifold features. The
reason we are able to achieve such conciseness is that
our geometric standard is tightly focused on geome-
try for scientific simulation, whereas standards such
as PDES STEP are intended for every possible indus-
trial use of computerized geometry. To ensure that
our representation is complete enough to be useful,
we focus on two particular problem domains: compu-

tational fracture mechanics and reactive, multiphase
fluid flows.

There are three possible strategies for standardizing
the way in which geometry is represented for the pur-
pose of mesh generation and analysis: (1) develop a
new standard, (2) adopt an existing standard, or (3)
develop a single API that can be used with several ex-
isting standards. In this report we advocate the first
of these strategies. We explain some of the reasons for
this choice in the following paragraphs.

The official international standard for geometry is
PDES STEP. This standard is designed for manufac-
turing, thus leading to design decisions that may make
PDES STEP less attractive to an academic researcher.
A significant practical problem is that the standard is
very large requiring several bookshelves of documen-
tation. The geometry standard for PDES STEP is
mostly in Part 42 of the documentation [1]; Part 42 is

a 300-page manual with hundreds of geometric entities
including esoteric shapes such as clothoids and Dupin
cyclides. The vast number of entities creates difficulty
for the downstream user of PDES STEP (for instance,
for the designer of a mesh generator who needs a ge-
ometry format for input) who must be able to parse
and interpret all the entities.

Related geometric topics, such as tolerance issues and
the use of a geometry composed of distinct adjacent
volumes, appear in documentation outside of Part 42.
Tolerance issues arise because, due to limited floating
point precision and due to necessary geometric approx-
imations, entities that are supposed to coincide do not
necessarily coincide exactly. Distinct adjacent volumes
are useful for modeling objects such as laminates. In
mathematical terms, these are used, for instance, for
boundary value problems such as solving ∇·(c∇u) = 0
where u is an unknown potential field and c is a given
conductivity field with discrete jump discontinuities at
interfaces.

Other well-known commercial standards include ACIS
SAT [2] and DXF. These representation standards
share the same difficulty with PDES STEP, namely, a
very large numbers of entities. In addition, these stan-
dards do not require a rigorous relationship between
objects of various dimensions, again creating difficul-
ties for mesh generators or other downstream users.
Another problem is that these standards are controlled
by for-profit companies, leading to some hesitancy in
their adoption.

Another strategy is to design a geometry API rather
than a geometric data structure [3, 4, 5]. Such an API
contains all routines necessary for a mesh generator,
such as point projection and bounding box. The API
thus insulates the mesh generator from the geometric
representation. This approach is acceptable for many
problems but inadequate for others. For example, in
the context of computational fracture mechanics, the
geometry itself evolves after every time step, and a new
mesh must be generated. Thus, the fracture analysis
routines must modify the geometry on every step. This
is well beyond the scope of proposed API’s for geome-
try. Addressing this class of problem seems to require
that the representation of the geometry is available via
a concrete data structure rather than an abstract API.

2. PROPOSED GEOMETRY STANDARD

The proposed standard is based on boundary repre-
sentation or brep. In a brep format, regions of three-
dimensional space are described by the surfaces that
bound them. Surfaces, in turn, are described by the
curves that bound them, and curves are described by
their endpoints. For some applications it is impor-
tant that internal boundaries can be handled (e.g., for

fracture simulation, a crack is represented by an in-
ternal boundary); the brep format appears to be the
best choice for representing geometries with internal
boundaries.

Our geometry standard is designed to allow multiple
types of mapping functions, but currently, our plan is
to use NURBS (nonuniform rational B-splines). We
believe that NURBS surfaces are sufficiently general
to be appropriate for almost all scientific applications
for which meshing is desired. However, we do not feel
strongly enough about this belief to make our geomtry
standard entirely dependent upon NURBS; thus, our
design allows other types of maps.

NURBS surfaces are piecewise parametric rational
functions (i.e., quotients of polynomials) described in
a certain easy-to-understand format involving knots,
control points, and weights. NURBS have become
very popular in industrial work because

• they generalize most families of parametric poly-
nomials,

• they include as special cases quadratic surfaces
such as spheres and cylinders, and

• they can be rendered quickly using clever subdi-
vision algorithms.

See Farin [6] for more information.

NURBS patches are most commonly parametrized by
rectangles (although triangular NURBS have also been
proposed in the literature). For more complex shapes,
it is necessary to use trimmed NURBS. Trimming
means that only part of the full NURBS patch is used.
The portion used is delimited by trimming curves. A
trimming curve lies in the parametric domain of the
patch; such curves are themselves NURBS and are
parametrized by intervals.

The remainder of this section is a description of our
new NURBS-based representation. Its textual format
is XML (extensible markup language), which is the
emerging standard for representing complex data in
a web-friendly format. We have developed an XML
schema to describe the data representation [7].

In our standard, a geometric object is composed of
entities. Entities can be points, curves, surfaces or
volumes. Each entity has an ID string. Each entity
(except a point) is described by its boundaries, which
are lower-dimensional entities. For example, a surface
shaped like a square holds the ID strings of four edges
surrounding it. A mapping function embeds an ob-
ject from one dimension into a higher dimension. In
our representation, each time an entity A is used as
a boundary for a higher-dimensional entity B, there
is an accompanying mapping function to map A into

the parametric domain of B. Each edge of the square,
when used as a boundary of the square, is accompa-
nied by a function from an interval of R1 to R2 that
gives the position of the edge in the parametric do-
main of the square. This square, with an accompany-
ing mapping function from a region of R2 to R3, can
then appear as the boundary of a higher dimensional
entity. Of course, the square is a simple example, but
it illustrates the basic idea; trimming curves can be
handled in the same way.

The approach described in the previous paragraph is
common to almost all brep formats that have been
proposed. A distinguishing feature of our approach is
that three-dimensional positions are not stored with
the geometric entities. For example, the position of
an edge in three-dimensional space is not stored with
the edge; instead, the edge’s position is obtained by
composing the mapping function embedding the edge
into the parametric domain of the square (from R1 to
R2) with the mapping function embedding the square
into R3. See Figure 1. Note that a composition of
piecewise rational functions is still a piecewise rational
function, so we do not leave the category of representa-
tions that we began with. (See more comments on this
matter in Section 5.) Similarly, the three-dimensional
position of a point is determined by composing three
maps (a trivial parametric map from R0 toR1, a para-
metric map from R1 to R2, and a parametric map
from R2 to R3).

The edge described in the previous paragraph can be
mapped into R3 in (at least) two different ways, since
there are likely to be (at least) two different surfaces
that share that edge as a boundary. We require that
both mappings share the same parametrization. In
other words, suppose the parametric domain of the
edge is an interval [a, b]. Let its embedding into the
parametric domain of one surface, say A, be a map-
ping (p(t), q(t)) and into the other surface, say B, a
mapping (p̃(t), q̃(t)). Finally, A is embedded into R3

via a mapping (m(u, v), n(u, v), o(u, v)) while B is em-
bedded via (m̃(u, v), ñ(u, v), õ(u, v)). Our requirement
is that, absent a tolerance error, for all t ∈ [a, b],

m(p(t), q(t)) = m̃(p̃(t), q̃(t)),
n(p(t), q(t)) = ñ(p̃(t), q̃(t)),
o(p(t), q(t)) = õ(p̃(t), q̃(t)).

(1)

We cannot expect these equations to hold exactly for
two reasons. First, limited floating point precision
means that computations that should give the same
answer in exact arithmetic may not give the same an-
swer on the computer. Second, the edge mappings
might be approximated by a CAD tool because exact
computation of a trimming curve (i.e., exact computa-
tion of the intersection of two NURBS surfaces) might
be too expensive or might generate a curve of too high
a degree. Therefore, we also store with each entity of

dimensions 0, 1 or 2 a tolerance to indicate how much
error (in the 2-norm) to expect when comparing two
different embeddings of the entity into R3.

Thus, our representation has the following data items.

• Each geometric entity has an ID string and a di-
mension (between 0 and 3). Objects of dimension
0 to 2 have a tolerance stored, which is a nonneg-
ative real number.

• Each geometric entity of dimension greater than
zero also contains a list of bounding entities.

• A bounding entity instance contains the ID string
of the corresponding lower dimensional geometric
entity, an orientation (+1, −1, or 0; 0 is used to
indicate an internal boundary), and a mapping
function. In principle we could allow many classes
of mapping functions, but the only type currently
supported is NURBS.

• A mapping function from a subset of Ra to Rb,
where 0 ≤ a ≤ 2 and a+1 ≤ b ≤ 3, is specified as
follows. If a = 0 the mapping is trivially specified
by an element of Rb. If a = 1, the mapping is
specified by a degree, a knot sequence, an array
of control points in Rb and their corresponding
weights. If a = 2 the mapping is specified by the
degree pair, knot sequences along each axis, and
a matrix of control points and weights.

Our representation has a number of attractive features
including

• There is a purely combinatorial test for water-
tightness (i.e, a test that the object does not have
holes/gaps in its bounding surface).

• Trimming is easily handled by this representa-
tion. Furthermore, trimming curves can be arbi-
trarily complicated.

• The tolerances fit easily into the semantics of the
mapping functions. In other systems in which 3D
coordinates are explicitly stored for vertices and
edges, it is often tricky to explain what tolerances
mean.

• The representation easily handles nonmanifold
geometric features. For example, to store a line
singularity in a 3D volume, we can map the line
directly into 3D parametrically. (In other words,
our standard permits a NURBS mapping func-
tion from R1 toR3.) A surface that is an internal
boundary is also easily represented.

• The proposed representation rigorously enforces
relationships among the entities. For example, it

Parametric
domain of E

Parametric
domain of A

Parametric
domain of B

Surface A

Surface B

Edge E

Figure 1: Two different mappings of an edge. Arrows indicate mapping functions.

is not possible to declare a hanging point in R3

whose relationship to 3D volumes of the geometry
is unknown. Every point, edge and surface can
be embedded in 3D only if it is associated with
a mapping function or mapping function compo-
sition that makes it a boundary of a particular
volume entity.

• The standard is very lean with the bare minimum
number of elements needed to represent complex
3D geometry. Hence the standard can be com-
prehended by a lone academic researcher or grad
student in a matter of hours.

2.1 Group Entities

Our geometry standard also features group entities.
These are entities which group together several enti-
ties of the same dimension under a single name. The
purpose of group entity is to indicate a relationship
between several entities of the same dimension. For
example, if a logical surface (e.g., the wing of an air-
plane) is the union of several NURBS surfaces, then
they can be grouped together. As another example, in
fracture mechanics we group together the two surfaces
that make up either face of a crack. Group entities
may be accompanied by a specification of how smooth
their internal interfaces are (not smooth, G1 or G2) as
well as a tolerance for this smoothness (in the case of
G1 or G2). They may also be accompanied by a list
of lower dimensional internal boundaries between geo-
metric entities that are exceptions to the smoothness
specification.

2.2 XML tags

As mentioned earlier, the exchange format for the pro-
posed geometric data structure is XML. Datatypes in
XML are given unique tags to identify them. For our
representation of geometry, the main tags are Geo-
Model, GeoEntity, BoundingEntity, MappingFunction,
and GroupEntity. The GeoModel tag is the object it-
self (i.e., an entire geometric model). The GeoEntity
and GroupEntity tags are for geo entities and group en-
tities described above. The BoundingEntity tag is used
for a specification that one GeoEntity acts as a bound-
ary to another. Each BoundingEntity tag contains a
MappingFunction to indicate the associated mapping
function. The top two levels of Figure 2 show the rela-
tionship between tags. A heavier arrow indicates that
the tag at the end of the arrow is nested inside the tag
at the tail. A light arrow indicates that a tag refers to
another object by naming its ID string.

3. RELATIONSHIP TO STEP

We compare the entities of our new representation
with the entities of the above-mentioned Part 42 of
STEP. STEP-42 has a large number of entities, some
of which are not particularly relevant to mesh gener-
ation (e.g., edge based wireframe model). The main
purpose of our new geometry representation is to give
a concise formulation of topological entities in order to
represent watertight geometry suitable for grid gener-
ation. In contrast, the purpose of STEP-42 is to rep-
resent product information in a common computer-
interpretable form that is complete and consistent
when exchanged among different applications; thus,
since different applications make use of different geo-

GeoModel

 GeoEntity BoundingEntity GroupEntity

 Edge Vertex Face Volume

 NURBSSurface NURBSCurve Manifold1D Manifold2D Manifold3D

 CurveMap SurfaceMapPointMap

MappingFunction

Figure 2: High level and derived entities of our geometry representation.

metric entities, STEP-42 has to “understand” a wide
variety of such entities. STEP-42 also addresses the
needs of classical solid modeling tools, both CSG and
brep, increasing the number of entities.

3.1 Derived classes

To facilitate the comparison between our geometry
standard and STEP-42, we make use of some de-
rived classes. We are not suggesting that such derived
classes would necessarily be used in practice, and in-
deed, the derived classes are not part of our standard
per se. Rather, we present them to clarify the relation-
ship between the two standards. The derived classes
correspond to the intuitive, informal way in which peo-
ple talk about geometry. For some applications, such
as rendering, the derived classes provide a useful way
to organize an application since, for instance, a ren-
derer for the Edge class would be quite different from
a renderer for the Face class even though both are
GeoEntities (see below). In fact, the vertices, edges,
faces, and volume(s) of a geometric model are all rep-
resented as GeoEntities, although an application that
uses the standard may want to make use of separate
Vertex, Edge, Face, and Volume classes for GeoEnti-
ties of dimensions 0, 1, 2, and 3, respectively.

Figure 2 shows both the high-level classes and the de-
rived subclasses. Our GeoEntity class is subdivided
into four derived subclasses: Vertex, Edge, Face, and
Volume. Similarly, our GroupEntity class has three de-
rived subclasses: Manifold1D, Manifold2D, and Mani-
fold3D representing connected sets of edges, faces, and
volumes, respectively. PointMap, CurveMap, and Sur-
faceMap are derived subclasses of MappingFunction
corresponding to mapping functions of dimension 0,

1, and 2, respectively, where the dimension refers to
the domain space of the mapping function. NURB-
SCurve and NURBSSurface are shown as derived sub-
classes of CurveMap and SurfaceMap, repectively. In
reality, NURBSCurve and NURBSSurface are derived
subclasses of NURBSMap (not shown). NURBSMap
is part of our geometric standard; currently, it is the
only type of MappingFunction supported.

3.2 STEP-42 entities

STEP-42 defines geometric and topological represen-
tation in three separate sections/clauses named geom-
etry, topology, and geometric models. STEP-42 has
a total of 178 entities with 99 entities in the geome-
try clause, 30 entities in the topology clause, and 49
entities in the geometric models clause.

The geometry clause contains entities for parametric
curves, surfaces, and volumes including

• NURBS curves, surfaces, and volumes with vari-
ous special cases, including Bézier forms;

• standard entities such as lines, conics, planes,
conical surfaces, block volumes, spherical vol-
umes, cylindrical volumes, toroidal volumes, and
others;

• special entities such as clothoids and
dupin cyclide surfaces;

• offset curves, offset surfaces, swept surfaces; and

• composite curves and surfaces.

The geometry clause also includes utility entities such
as points, directions, and transformations.

The topology clause contains the following topological
entities:

• one topological representation item;

• 4 entities of dimension 0: vertex, vertex point,
vertex loop, vertex shell;

• 15 entities of dimension 1: edge, edge curve,
oriented edge, seam edge, subedge, path,
oriented path, open path, loop, edge loop,
poly loop, face bound, face outer bound,
wire shell, connected edge set; and

• 10 entities of dimension 2: face, face surface,
oriented face, subface, connected face set,
open shell, oriented open shell, closed shell,
oriented closed shell, connected face sub set.

The geometric modeling clause contains entities used
to represent components for two classical solid mod-
eling methods, namely, constructive solid geometry
(CSG) and boundary representation (brep). Some
typical entities are

• solid model, manifold solid brep,
brep with voids;

• block, tetrahedron, convex hexahedron;

• sphere, torus, ellipsoid; and

• swept area solid, extruded area solid, re-
volved area solid.

3.3 Correspondence

Table 1 gives the correspondence between entities of
our new geometry representation and those of STEP-
42. It also indicates the classification of STEP-42 en-
tities into the three clauses of STEP-42. We can see
that in many cases, there is a one-to-many relation-
ship between the entities. Even though the number
of entities of the new representation is very small in
comparison with the 178 entities of STEP-42, the ta-
ble shows that 51 entities of STEP-42 can be derived
from the entities of our new geometric representation.

An important feature of our new geometry scheme is
that GeoEntity provides a clean abstraction of the ba-
sic topological entities: vertex, edge, face, and volume.
In contrast, in STEP-42 a face is bounded by loops,
a loop is a collection of edges and an edge is bounded
by vertices. In other words, group entities are nested
between basic topological entities.

4. GEOMETRY API

We have partly developed APIs for the geometry stan-
dard. Each API is implemented as a C++ library and
will be available in open-source form. There are a total
of five API’s associated with the geometry, as follows.

1. The low-level read-only API includes primitives
for accessing the data of the geometry using it-
erators. For example, one can define an iterator
over all GeoEntities of dimension 0 and then ac-
cess the internals of these entities with further
nested iterators.

2. The mid-level read-only API includes geomet-
ric primitives important for mesh generation (see
Section 5.). These include point and derivative
evaluation routines for NURBS, bounding box
routines, and solvers to find ray- and plane- in-
tersections. It also includes routines to estimate
local curvature of curves and patches.

3. The mid-level write-access API includes geomet-
ric primitives for creating and updating a geome-
try. A particularly important application of this
API for the overall project is growth of a crack for
a fracture simulation. Growing a crack generally
means adding a new NURBS patch. This API
requires that the low-dimensional entities be cre-
ated and updated before the entities that contain
them are created and updated.

4. The high-level API includes complicated algo-
rithms including (1) creation of a geometry via
solid-modeling operations (e.g., intersection of
two existing geometries) and (2) finite element
mesh generation. The routines in this API will
be exposed as web-services as well as C++ rou-
tines. The design of this API is just beginning,
and some of the routines remain research chal-
lenges.

5. In addition, there are several efforts, e.g., [3, 4, 5],
to develop a standard API for all geometric mod-
elers. We are interested in implementing some of
these APIs for our proposed geometry standard.

The current version of API documentation is posted
on the web [8]. The source, when complete, will be
accessible from the same website.

5. GENERATING MESHES

In this section, we present evidence that the geometric
standard is suffiently general that it can be used for
several types of mesh generators employing different
mesh-generation strategies. In particular, we focus on
three unstructured mesh generators developed within

New Scheme STEP-42

Class Derived
Subclass

Entities Clause

GeoEntity topological representation item Topology
Vertex vertex, vertex point
Edge edge, edge curve, oriented edge, seam edge
Face face, face surface, oriented face

brep 2d Geometric models
Volume manifold solid brep, brep with voids

GroupEntity wire shell, connected edge set,
connected face set

Topology

Manifold1D path, oriented path, open path, loop,
edge loop, poly loop, face bound,
face outer bound

Manifold2D open shell, oriented open shell,
closed shell, oriented closed shell

Manifold3D

MappingFunction geometric representation item Geometry
PointMap point, cartesian point,

cylindrical point, polar point, spheri-
cal point, point on curve, point on surface,
point in volume

CurveMap curve
NURBSCurve b spline curve, uniform curve,

b spline curve with knots,
quasi uniform curve,
rational b spline curve, bezier curve

SurfaceMap surface
NURBSSurface b spline surface, uniform surface,

b spline surface with knots,
quasi uniform surface,
rational b spline surface, bezier surface

Table 1: Correspondence between our new geometry scheme and STEP-42

the Cornell-Mississippi State mesh generation project:
(1) a 3D advancing front mesh generator (called JMesh
[9]), (2) a mesh generator based on 3D Delaunay Trian-
gulations (called DMesh [10]), and (3) an octree-based
mesh generator (called QMG [11]).

Let G be a 3D geometry represented in our new for-
mat. To prepare G for a 3D advancing front method,
we first triangulate the surfaces in 2D parametric
space. This requires subdividing the edges that ap-
pear in 2D parametric space. Because of the assump-
tion of consistent parametrizations (i.e., equation (1)),
each time an edge needs to be split in one 2D paramet-
ric space, it is easy to find the corresponding point in
any other parametric space in which it is embedded.
Therefore, we adopt the strategy of always splitting
edges at their parametric midpoints.

The 2D entities are triangulated in parametric space
using, for instance, a constrained Delaunay triangula-
tion [12] or a directionally weighted constrained De-
launay triangulation [13]. The latter is necessary if
the parametric mapping R2 → R3 is highly stretched
in some directions, because we want to end up with
well-shaped triangles embedded in R3 even if the 2D
parametric space is skewed.

After this procedure is complete, the boundary of G
is now represented as a simplicial complex of flat line
segments and triangles. This is a valid starting point
for an advancing front mesh generator such as JMesh.

Similar steps are used to prepare for a Delaunay-based
mesh generator. The surface is initially triangulated
then a full 3D Delaunay Triangulation is built using
the vertices of the surface triangles and any specified
internal vertices. To ensure that the mesh conforms
to the surface (i.e., to ensure that tetrahedra do not
penetrate the surface) and to ensure high-quality mesh
elements, it is necessary to carry out point insertion on
edges and surfaces. Such point insertions are carried
out in the appropriate parametric space.

QMG, the octree-based mesh generator, must com-
pute intersections of (1) lines with surfaces of G and
(2) planes with curves of G. Intersecting a line with a
surface of G requires solving systems of rational poly-
nomial equations. By clearing denominators this prob-
lem reduces to solving systems of polynomial equa-
tions. In this case we can use algebraic techniques
[14, 15] or a safeguarded Newton method combined
with subdivision. Intersecting a plane with curve is
only a one-variable problem; in principle, this is sim-
pler than intersecting a line with a surface. Unfor-
tunately, the problem is made more complicated by
the following issue. In our geometry, the 3D bound-
ing curves are the composition of a NURBS curve
mapping R1 → R2 with a NURBS surface mapping
R2 → R3. This composition is potentially of high

degree (since the degree of the resulting curve is the
product of the degrees of the two mappings) and also
potentially has many difficult-to-find breakpoints (see
Figure 3). Because of this complication, we use a sub-
division/Newton algorithm instead of algebraic tech-
niques.

Figure 3: A complicated trimming curve with break-
points indicated by asterisks. Once mapped into
3D, this curve also has breakpoints at every loca-
tion where the curve crosses either a vertical or
horizontal segment in the figure (corresponding to
the knots of the 2D NURBS map).

6. CONCLUSIONS

We have claimed that our new geometric representa-
tion is well-suited for finite element mesh generation.
In particular, the following characteristics make the
standard especially useful for mesh generation.

• There is a purely combinatorial test for water-
tightness. Water-tightness is a necessary precon-
dition for meshing and it is useful to have an ef-
ficient test for it.

• Consistent parameterizations are enforced. In
other words, if an edge is split by a point in one
parametric space then it is easy to find the cor-
responding point in any other parametric space
in which the edge is embedded; further, the two
points are within a given tolerance of each other
in 3D space.

• The representation easily handles nonmanifold
geometric features. This is not strictly neces-
sary for meshing, but is particularly useful for
our problem domains which require nonmanifold
features (e.g., an internal crack or a moving front
when doing fracture or fluids, respectively).

• The standard is very lean with the bare minimum
number of elements needed to represent complex
3D geometry.

The new geometry standard has been been adopted by
the Cornell-Mississippi State joint ITR project. We
hope that, with feedback from others in the mesh gen-
eration community, the standard will become widely
useful for others interested in scientific simulation.

7. ACKNOWLEDGEMENTS

We thank Madhukar Anand of IIT Kharagpur for de-
veloping a preliminary XML specification of the geo-
metric data structure.

This publication is made possible through partial sup-
port provided by DoD High Performance Computing
Modernization Program (HPCMP) Programming En-
vironment & Training (PET) activities through Mis-
sissippi State University under the terms of Agree-
ment No. GS04T01BFC0060. The opinions expressed
herein are those of the authors and do not necessarily
reflect the views of DoD or Mississippi State Univer-
sity.

This work was supported by NSF ITR #ACI-0085969
and by NSF CISE Research Infrastructure #EIA-
9972853.

References

[1] 10303-42 I.S.I. Industrial automation systems and
integration – Product data representation and ex-
change – Part 42: Integrated generic resource:
Geometric and topological representation. 2000

[2] Spatial Corp., A Dassault Systemes S. A. Com-
pany. “ACIS 7.0 SAT File format.”, 2001. See
http: // www.spatial.com / training support /
support / satfile / satfile70.html

[3] IBM, NASA, SDRC, Unigraphics, OpenCas-
cade. “CAD Services V1.0.”, 2001. Http: //
cgi.omg.org / docs / mfg / 01-07-10.pdf

[4] Witzeman F., Michael T. “Unstructured Grid
Consortium.”, 2002. Private communication with
Frank Witzeman, Air Force Research Laboratory
and Todd Michael, Boeing

[5] Glimm J., et al. “TSTT Advanced Meshing.”,
2001. Http: // www.tstt-scidac.org / research /
mesh.html

[6] Farin G. NURBS: From Projective Geometry to
Practical Use, 2nd Ed. A. K. Peters, Natick, Mas-
sachusetts, 1999

[7] Vavasis S. “XML schema for new geometry.”,
2001. See http: // asp.cs.cornell.edu / ∼vavasis
/ geo.xsd

[8] Chew L.P., Gopalsamy S., Vavasis S. “API
for new geometry.”, 2002. See http: //
asp.cs.cornell.edu / ∼vavasis / geo api.html

[9] Cavalcante Neto J.B., Wawrzynek P.A., Carvalho
M.T.M., Martha L.F., Ingraffea A. “An Algo-
rithm for Three-Dimensional Mesh Generation
for Arbitrary Regions with Cracks.” Engineering
with Computers, vol. 17, 75–91, 2001

[10] Chew L.P. “Guaranteed-Quality Delaunay Mesh-
ing in 3D.” Proceedings of the 13th ACM Sympo-
sium on Computational Geometry, pp. 391–393.
ACM Press, 1997

[11] Mitchell S.A., Vavasis S.A. “Quality Mesh Gen-
eration in Higher Dimensions.” SIAM J. Com-
puting, vol. 29, 1334–1370, 2000

[12] Chew L.P. “Constrained Delaunay Triangula-
tions.” Algorithmica, vol. 4, 97–108, 1989

[13] Chew L.P. “Guaranteed-quality mesh generation
for curved surfaces.” Proceedings of the ninth
symposium on computational geometry, pp. 274–
280. ACM Press, 1993

[14] Jónsson G., Vavasis S. “Solving polynomials with
small leading coefficients.”, 1999. Preprint

[15] Jónsson G., Vavasis S. “Accurate Solution of
Polynomial Equations Using Macaulay Resultant
Matrices.”, 2000. Preprint

